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a  b  s  t  r  a  c  t

Near-infrared  spectroscopy  (NIRS)  can  detect  two  different  kinds  of signals  from  the human  brain:  the
hemodynamic  response  (slow)  and  the  neuronal  response  (fast).  This  paper  explores  a  nonlinear  aspect  in
the tactile-stimulus-evoked  neuronal  optical  response  over  a NIRS  time  series  (light  intensity  variation).
The  existence  of the  fast  optical  responses  (FORs)  over  the  time  series  recorded  in  stimulus  sessions  is con-
firmed  by  event-related  averaging.  The  chaos  levels  of the NIRS  time  series  recorded  both  in stimulus  and
in rest  sessions  are  then  identified  according  to the  estimated  largest  Lyapunov  exponent.  The  obtained
results  ascertain  that  stimulus-evoked  neuronal  optical  responses  can  be  detected  in the  somatosensory
cortex  using  continuous-wave  NIRS  equipment.  Further,  the  results  strongly  suggest  that  the  chaos  level
can be  used  to recognize  the  FORs  in  NIRS  time  series  and,  thereby,  the  state  of the  pertinent  brain  activity.

© 2011 Elsevier Ireland Ltd. All rights reserved.

Non-invasive brain-imaging technologies have vastly enhanced the
ability to observe human brain functioning at the macroscopic
level. A number of modalities of non-invasive brain activity imag-
ing and measurement have been developed: One such modality,
which includes electroencephalography (EEG) and magneto-
encephalography (MEG), records neuronal-activity-related signals
at the scalp (the electrophysiological response). These offer excel-
lent temporal resolution on the order of milliseconds but limited
spatial resolution. Another modality, which includes functional
magnetic resonance imaging (fMRI), measures the oxygen level
variation in the cerebral blood (the hemodynamic response),
providing outstanding spatial resolution in millimeters but poor
temporal resolution.

In recent years, a new brain-imaging technology reconciling
spatial and temporal resolution, near-infrared spectroscopy (NIRS),
has been utilized in investigations of stimulus/task-evoked brain
functions of adult brains [2,13,19,20], infant brains [15], and neural
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diseases [25]. NIRS offers the advantages of low cost, insensitivity
to motion artifacts, and potability. Furthermore, NIRS can mea-
sure two different kinds of optical signals from the human brain:
hemodynamic (slow) response and neuronal (fast) response [19].

NIRS detects hemodynamic changes in brain blood in the fol-
lowing ways: near-infrared wavelengths in the 700–1000 nm range
are irradiated onto the head; this light penetrating the scalp
is either reflected or absorbed by the blood chromophores in
the brain tissue [19]; the light intensity at a specific position is
measured to detect the localized concentration changes of the
blood chromophores, oxygenated hemoglobin and deoxygenated
hemoglobin. NIRS can also detect stimulus/task-evoked local-
ized neuron-optical-properties variation, which are faster optical
responses compared to those prompted by hemodynamic changes.
The NIRS-detected neuronal response is termed either a fast optical
response (FOR) or an event-related optical signal (EROS). A neuron’s
FORs coincide with its electrophysiological responses [3].  These,
normally occurring on the millisecond scale, are prompted by light-
scattering-property changes associated with neuronal swelling and
extracellular space changes due to ion currents crossing the neu-
ronal membrane [8,9,19].

The FOR is very attractive in optical brain imaging due to its
outstanding temporal resolution and good spatial resolution. Grat-
ton and Fabiani [8] reported that the location of FORs detected by
NIRS was consistent with fMRI detection and that the latency of
the response was comparable to the EEG-measured visual evoked
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potential (VEP). Hence the FOR is very useful in studying neuronal
vascular coupling, and can also aid cognitive studies that require
both temporal and spatial resolution.

In the last decade, a number of investigations have been carried
out on different aspects of FOR as detected in various human brain
cortical areas by NIRS. Gratton et al. [6] discovered FORs in the visual
cortex with frequency-domain NIRS equipment, and analyzed the
ways in which heart-pulse noises in NIRS time series interfere with
FOR detection in the brain. Later, they revealed the linear relation-
ship between FORs and hemodynamic responses [12], and used a
larger data set to investigate FORs’ replicability, consistency, local-
ization, and resolution [7]. Furthermore, they investigated FORs in
other brain cortical areas including the somatosensory cortex [11]
and the motor cortex [10]. Rinne et al. [21] reported two  FOR com-
ponents with different delays, 100 ms  and 160 ms,  in the auditory
cortex. Steinbrink et al. [24] detected FORs evoked by median nerve
stimulation in the parietal cortical region using continuous-wave
NIRS equipment.

Meanwhile, some studies have reported less promising results:
Steinbrink et al. [23], for instance, found that the FORs, detected
in the visual cortex, were much smaller in magnitude than those
found by the Gratton group. Franceschini and Boas [4] investigated
the FORs evoked by finger tapping (motor cortex), tactile stim-
ulation, and electrical median nerve stimulation (somatosensory
cortex) in 10 healthy volunteers; they were able to detect FORs in
43% of the measurements during finger tapping, 60% of those dur-
ing tactile stimulation, and 23% of those during electrical median
nerve stimulation. Several research groups have utilized indepen-
dent component analysis (ICA) to separate FOR signals and noises
from raw NIRS time series, concluding that the ICA is a promising
approach to detect fast neuronal signals [17,18].

Although there have been many computational analyses on
obtaining FORs, no work has yet examined their nonlinear aspects.
Barbour et al. [1] investigated the chaotic behavior of the vascula-
ture in a large tissue structure. Moreover, Truong et al. [26] reported
that some hemodynamic-response time series detected by NIRS are
chaotic, and that the chaos level can be treated as an index to dis-
tinguish different brain states (task vs. rest). This study explores
the chaotic characteristics of FOR time series. The FORs are small
in magnitude compared to noises in NIRS time series (e.g. heart-
pulse noise). We  use the ICA to remove the non-relevant noises,
after which an event-related averaging is employed to find the
FORs over the NIRS time series. The estimation algorithm in [22]
was then utilized to identify the chaos levels of the NIRS time
series.

The data were acquired with a continuous-wave NIRS imag-
ing system (DYNOT: DYnamic Near-infrared Optical Tomography;
NIRx Medical Technologies, Brooklyn, NY) at a sampling rate of
41 Hz. The NIRS system emits laser light at different wavelengths
(760 nm and 830 nm)  from the source. Fig. 1(a) shows the chan-
nel distribution and measurement locations. The distance between
adjacent optodes is 1 cm.  The source-detector pairs are positioned
above the somatosensory cortex (the C3 position, according to the
international 10/20 system).

The DYNOT equipment employed in the current study incor-
porates optical fiber cables designed to support both emitting and
receiving light [17]. This is based on the concept of “collocated”
channel (i.e. the source and detector locations are the same: see
the source 1-detector 1 pair in Fig. 1(b)), which is capable of cap-
turing light reflected by tissues at a very superficial layer (<3 mm).
The signal detected from this volume contains mainly noises. The
optodes positioned at greater distances capture light propagating
along a banana-shaped path that has successively greater max-
imum depths. In the current study, we took advantage of this
optodes setting when applying the ICA to NIRS time series pro-
cessing.

Fig. 1. Channel distribution and measurement location on the head.

Ten right-handed healthy volunteers (all males, aged 24–31
years) participated in this experiment. None of the participants had
a history of any neurological disorder. All of the participants pro-
vided written informed consent. In the experiment, the subjects
received 2 Hz tactile stimuli in their right hand. The experiment
consisted of a 30 s preparation period, a 10 min  stimulation period
including alternating 30 s rest and tactile stimulus sessions (the
rest and stimulus sessions were each repeated 10 times), and a 30 s
after-exercise period. For control purpose, the tactile stimuli were
also applied to the ipsilateral hand (left hand) of each subject fol-
lowing the same paradigm. Throughout the experimental period,
optical data were recorded at a sampling rate of 41 Hz. To remove
the hemodynamic response, very-low-frequency components, and
physiological noises (e.g. Mayer wave, around 0.1 Hz, respiration
noise, around 0.25 Hz, and heart pulse noise, around 1 Hz) from the
optical signal, the data were high-pass filtered at >1 Hz. After their
base-line correction, the data were subjected to ICA.

NIRS data usually has a huge number of temporal samplings
(e.g. 11 min  recording at 41 Hz sampling rate) but a relatively small
number of channels (e.g. 9 channels). The ICA therefore is suitable
for NIRS data processing, and indeed, it has been widely employed
in task-related NIRS studies [17,18].

The rationale for using ICA in the current study was that the
noises were statistically independent of, and therefore separate
from, all of the other components, those representing neuronal
activities of interest. ICA decomposes a signal into its statistically
independent components that are linearly related to the original
data [14]. In the current study, we  used the ICA algorithm intro-
duced in [14]. Let M and N denote the number of channels and that
of data points, respectively (in this study, M = 9 and N = 27,060).
Let Y ∈ RM×N and S ∈ RM×N be the matrices representing the data
points observed and the independent components to be estimated,
respectively. Then, the linear relationship between Y and S can
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Fig. 2. ICA and noise separation (subject 1, wavelength 760 nm): (a) A representative transformation matrix A. (b–f) Five representative independent noise components
(heart  pulse noise can be found in (b)).

be written in matrix form as Y = A·S, where A ∈ RM×M is the trans-
formation matrix. The ICA tries to find the matrix A along with
the component matrix S, in which the components are statistically
independent (non-Gaussian distribution) upon the observed data
Y.

The transformation matrix A represents the weight that individ-
ual independent components contribute to the measured signal.
The independent components resulting in a high transformation
weight contributing to the signal detected from a collocated chan-
nel are likely to represent noises in the raw data. These components
therefore need to be removed from the component matrix S, after
which the modified component matrix, free of (separated) noises,
is restored into the observed signal.

After pre-processing, the signal in each data channel was recal-
culated to its relative value (�I/I0), where �I  referred to the
concentration change at different sample points, and I0 was  the

initial value of the data series. We  segmented the data recorded
in the stimulus sessions for each channel and each subject into
stimulus-related 0–500 ms  epochs after the onset of the tactile
stimuli (both the contralateral and ipsilateral hand, the data in
1 s was segmented into two  epochs due to the 2 Hz stimulus fre-
quency). In one stimulus session (30 s), 60 stimulus-related epochs
were totally generated. The data series recorded in the rest ses-
sions were segmented following a similar pattern for the purpose
of comparison. In one rest session (30 s), 60 rest-related epochs
were totally generated.

The data series measured from each channel in both the
stimulus-related and rest-related epochs were first averaged for
each subject. The channel containing the FORs was statistically
assessed using t-test (p < 0.05) for every subject. The representa-
tive signals were then averaged across subjects giving a group level
result, which was also assessed against the baseline using t-test
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Fig. 3. The group level tactile-stimulus-evoked FORs (the blue line (+) depicts the averaged stimulus related epochs; the red line (©) shows the rest related epochs; the
asterisk  means a significant t-value (p < 0.05); n indicates the subject number): (a) wavelength 760 nm (n = 8), (b) wavelength 830 nm (n = 7), (c) wavelength 760 nm under
the  control condition (n = 8), and (d) wavelength 830 nm under the control condition (n = 7). (For interpretation of the references to color in this figure legend, the reader is
referred  to the web  version of the article.)

(p < 0.05). Under the control condition, the averaged signal was
derived based on the data measured from the same channel as in the
previous stage. The group averaged responses were calculated sep-
arately for two wavelengths. If in a given subject no channel showed
significant deviation, this subject (with specific wavelength) was
excluded from the group averaging.

The presence of chaos in a dynamical system can be evaluated by
estimating the largest Lyapunov exponent (LLE). The LLE is a quan-
tity that characterizes the rate of separation of infinitesimally close
trajectories. In the current study, the LLE of the preprocessed NIRS
time series in different sessions were estimated using the method
proposed in [22]. The LLE �1 is defined as d(t) = C · e�1·t, where d(t) is
the average divergence at time t and C is a constant that normalizes
the initial separation.

The first step in LLE estimation is to reconstruct the attractor
dynamics from a single time series. We  selected the time delay �
using the C–C method introduced in [16], the embedding dimension
m using the G–P method from [5],  and the mean period T using the
fast Fourier transform. For an N-point time series, {y1, y2, . . .,  yN},
the reconstructed trajectory X ∈ R[N−(m−1)�]×m can be expressed as a
matrix wherein each row is a vector Xi = [yi yi+� . . . yi+(m−1)�], where
i = 1, 2, . . .,  N−(m−1)�.

After reconstructing the dynamics, the algorithm locates the
nearest neighbor of each point on the trajectory. The nearest neigh-
bor Xi′ of a particular point Xi is found by searching for the point
that minimizes the distance to Xi. This is expressed as di(0) =
min

∥∥X i − X i′
∥∥ ,

∣∣i − i′
∣∣ > T , where di(0) is the initial distance from

the ith point to its nearest neighbor, T indicates the mean period,
and ||·|| denotes the Euclidean norm.

From the definition of �1, it is assumed that the ith pair of the
nearest neighbor diverges at the approximate rate given by the
LLE: di(k) ≈ Ci · e�1·(k·�t), where k indicates the time step. By taking
the logarithm of both sides, ln di(k) ≈ ln Ci + �1 · (k · �t)  is obtained,
where k = 1, 2, . . .,  min(N − (m − 1)�  − i, N − (m − 1)�  − i′). The last
equation represents a set of approximately parallel lines, each with

a slope roughly proportional to �1. The LLE is easily and accurately
calculated by means of a least-square fit to the “average” line. The
process of averaging is critical to the accurate calculation of LLE
values for small and noisy data sets [22].

After pre-processing, we categorized the time series into three
sets preparatory to examine the chaotic characteristics. Set A is of
the time series recorded from the channels containing the FORs
during the stimulus sessions, set B is of the time series recorded
(from the same channels as in Set A) during the stimulus sessions
under the control condition, and set C is of those recorded during
the rest sessions. In order to statistically balance the three sets, the
estimated LLEs of the rest-related response were calculated over
the same number of stimulus-related epochs randomly selected
from the total number of rest epochs. We  estimated the LLE of the
time series in each session and averaged them to derive a group
level result. The LLE values for the FORs and non-FORs were statis-
tically assessed using t-test (p < 0.05).

We  used the Rossler chaotic time series presented in [5] to
examine the performance of the LLE-estimation algorithm. The sys-
tem has an expected LLE of 0.0677. We used the time series u for
phase reconstruction and LLE estimation. Different lengths of the
time series were selected as 500, 1000, and 3000 points, and the
estimated LLEs for those were 0.0673, 0.068, and 0.676.

ICA cannot identify sequences of independent components.
Therefore, we used matrix A as a tool to determine which com-
ponent was related to the noises (e.g. the heart-pulse noise and
measurement noise), so that they be removed from the raw signal.
Fig. 2(a) shows a representative matrix A of subject 1 (wavelength
760 nm). In this matrix, each cell with index (p, q) represents the
weight relating the qth component to the pth data series. The
weights of components 1–5, in the bottom row, are relatively large,
indicating that these components contribute to the signal measured
from the collocated channel. Therefore, they need to be removed
from the component matrix. Matrix A of every subject in the current
study showed a similar pattern.
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Fig. 4. The estimated LLEs under different conditions (the asterisk indicates a significant t-value, p < 0.05): (a) wavelength 760 nm, (b) wavelength 830 nm.

Fig. 2(b) shows the 7 s data of independent component 1 (sub-
ject 1, wavelength 760 nm). The data clearly show the heart-pulse
noise separated from the raw signal, and matrix A indicates that
this component contributes to most of the channels, including the
collocated channel. Therefore, it was removed from the compo-
nent matrix. After removing the component-related noises, the rest
of the components were restored to the observed signal in each
channel.

Fig. 3 shows the averaged FORs found by event-related averag-
ing in all subjects. Panels (a) and (b) plot the averaged FORs and
rest epochs at the 760 nm and 830 nm wavelengths, respectively.
Panels (c) and (d) plot the averaged time series under the control
condition and rest epochs at the two wavelengths. Among the ten
subjects, one subject’s data at 830 nm and two subjects’ data at
760 nm were excluded since no significant point was found. For
five subjects, the FORs were found in channel 3, whereas in the rest
of the subjects, they were found in channel 4. The FORs showed
a significant decrease from the base line within 300–400 ms  after
the tactile stimulus at both wavelengths. By contrast, the averaged
signal under the control condition and in the rest sessions showed
no significant decrease.

Fig. 4 shows the estimated LLEs under different conditions. The
detected NIRS time series at both wavelengths were completely
chaotic. However, the FOR time series recorded in the stimulus ses-
sions were significantly more chaotic than the non-FOR time series
recorded in the rest sessions. Moreover, the time series recorded
under the control condition had similar chaotic level compared
with the non-FOR time series.

Chaos denotes the chaotic motion generated by nonlinear sys-
tems whose dynamical laws uniquely determine the evolution of
its states. The present study first confirmed that tactile-stimulus-
evoked FORs can be found in the somatosensory cortex using
continuous-wave NIRS equipment, and then analyzed the chaotic
characteristics of the FOR time series.

FORs reflect the optical property changes of neurons as evoked
by stimuli or mental tasks. Due to their outstanding temporal res-
olution and good spatial resolution, FORs can be considered to
provide an alternative means of understanding brain function and
connectivity. However, the detectability of FORs remains contro-
versial. Previous studies have analyzed different aspects of FORs
in different brain areas. Some have claimed that FORs could not be
detected in NIRS time series. In the current study, however, we were
able to find FORs evoked by tactile stimulus in the somatosensory
cortex. Furthermore, the estimated LLEs indicated that the FOR time
series were more chaotic than the non-FOR time series. The overall
results strongly suggested that the LLE-evaluated chaos level can

be used as an index indicating the existence of FORs over a NIRS
time series and, thereby, different states of pertinent brain activity.
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